Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EMBO Mol Med ; 13(12): e14459, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1468845

ABSTRACT

COVID-19 vaccines already in use or in clinical development may have reduced efficacy against emerging SARS-CoV-2 variants. In addition, although the neurotropism of SARS-CoV-2 is well established, the vaccine strategies currently developed have not taken into account protection of the central nervous system. Here, we generated a transgenic mouse strain expressing the human angiotensin-converting enzyme 2, and displaying unprecedented brain permissiveness to SARS-CoV-2 replication, in addition to high permissiveness levels in the lung. Using this stringent transgenic model, we demonstrated that a non-integrative lentiviral vector, encoding for the spike glycoprotein of the ancestral SARS-CoV-2, used in intramuscular prime and intranasal boost elicits sterilizing protection of lung and brain against both the ancestral virus, and the Gamma (P.1) variant of concern, which carries multiple vaccine escape mutations. Beyond induction of strong neutralizing antibodies, the mechanism underlying this broad protection spectrum involves a robust protective T-cell immunity, unaffected by the recent mutations accumulated in the emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Brain/metabolism , COVID-19 Vaccines , Humans , Mice , Mice, Transgenic , Spike Glycoprotein, Coronavirus/metabolism
2.
Eur J Immunol ; 51(1): 180-190, 2021 01.
Article in English | MEDLINE | ID: covidwho-1023283

ABSTRACT

Although the COVID-19 pandemic peaked in March/April 2020 in France, the prevalence of infection is barely known. Using high-throughput methods, we assessed herein the serological response against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 1847 participants working in three sites of an institution in Paris conurbation. In May-July 2020, 11% (95% confidence interval [CI]: 9.7-12.6) of serums were positive for IgG against the SARS-CoV-2 N and S proteins, and 9.5% (95% CI: 8.2-11.0) were neutralizer in pseudo-typed virus assays. The prevalence of seroconversion was 11.6% (95% CI: 10.2-13.2) when considering positivity in at least one assay. In 5% of RT-qPCR positive individuals, no systemic IgGs were detected. Among immune individuals, 21% had been asymptomatic. Anosmia (loss of smell) and ageusia (loss of taste) occurred in 52% of the IgG-positive individuals and in 3% of the negative ones. In contrast, 30% of the anosmia-ageusia cases were seronegative, suggesting that the true prevalence of infection may have reached 16.6%. In sera obtained 4-8 weeks after the first sampling, anti-N and anti-S IgG titers and neutralization activity in pseudo-virus assay declined by 31%, 17%, and 53%, resulting thus in half-life of 35, 87, and 28 days, respectively. The population studied is representative of active workers in Paris. The short lifespan of the serological systemic responses suggests an underestimation of the true prevalence of infection.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Pandemics , Paris/epidemiology , Seroepidemiologic Studies , Time Factors
3.
Cell Host Microbe ; 29(2): 236-249.e6, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-978240

ABSTRACT

To develop a vaccine candidate against coronavirus disease 2019 (COVID-19), we generated a lentiviral vector (LV) eliciting neutralizing antibodies against the Spike glycoprotein of SARS-CoV-2. Systemic vaccination by this vector in mice, in which the expression of the SARS-CoV-2 receptor hACE2 has been induced by transduction of respiratory tract cells by an adenoviral vector, confers only partial protection despite high levels of serum neutralizing activity. However, eliciting an immune response in the respiratory tract through an intranasal boost results in a >3 log10 decrease in the lung viral loads and reduces local inflammation. Moreover, both integrative and non-integrative LV platforms display strong vaccine efficacy and inhibit lung deleterious injury in golden hamsters, which are naturally permissive to SARS-CoV-2 replication and closely mirror human COVID-19 physiopathology. Our results provide evidence of marked prophylactic effects of LV-based vaccination against SARS-CoV-2 and designate intranasal immunization as a powerful approach against COVID-19.


Subject(s)
Administration, Intranasal/methods , COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Cricetinae , Female , Genetic Vectors , Immunity, Mucosal , Immunization, Secondary , Immunoglobulin A/immunology , Lentivirus/genetics , Lentivirus/immunology , Male , Mice , Models, Animal , Respiratory System/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Load
4.
Sci Transl Med ; 12(559)2020 09 02.
Article in English | MEDLINE | ID: covidwho-724557

ABSTRACT

It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their differing antibody response profiles. Here, we performed a pilot study of four serological assays to assess the amounts of anti-SARS-CoV-2 antibodies in serum samples obtained from 491 healthy individuals before the SARS-CoV-2 pandemic, 51 individuals hospitalized with COVID-19, 209 suspected cases of COVID-19 with mild symptoms, and 200 healthy blood donors. We used two ELISA assays that recognized the full-length nucleoprotein (N) or trimeric spike (S) protein ectodomain of SARS-CoV-2. In addition, we developed the S-Flow assay that recognized the S protein expressed at the cell surface using flow cytometry, and the luciferase immunoprecipitation system (LIPS) assay that recognized diverse SARS-CoV-2 antigens including the S1 domain and the carboxyl-terminal domain of N by immunoprecipitation. We obtained similar results with the four serological assays. Differences in sensitivity were attributed to the technique and the antigen used. High anti-SARS-CoV-2 antibody titers were associated with neutralization activity, which was assessed using infectious SARS-CoV-2 or lentiviral-S pseudotype virus. In hospitalized patients with COVID-19, seroconversion and virus neutralization occurred between 5 and 14 days after symptom onset, confirming previous studies. Seropositivity was detected in 32% of mildly symptomatic individuals within 15 days of symptom onset and in 3% of healthy blood donors. The four antibody assays that we used enabled a broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different subpopulations within one region.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Cohort Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Enzyme-Linked Immunosorbent Assay/methods , Female , Flow Cytometry/methods , France/epidemiology , Healthy Volunteers , Humans , Immunoprecipitation/methods , Luciferases , Male , Middle Aged , Neutralization Tests , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , SARS-CoV-2 , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Translational Research, Biomedical , Young Adult
5.
EBioMedicine ; 59: 102915, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-691414

ABSTRACT

BACKGROUND: The serologic response of individuals with mild forms of SARS-CoV-2 infection is poorly characterized. METHODS: Hospital staff who had recovered from mild forms of PCR-confirmed SARS-CoV-2 infection were tested for anti-SARS-CoV-2 antibodies using two assays: a rapid immunodiagnostic test (99.4% specificity) and the S-Flow assay (~99% specificity). The neutralizing activity of the sera was tested with a pseudovirus-based assay. FINDINGS: Of 162 hospital staff who participated in the investigation, 160 reported SARS-CoV-2 infection that had not required hospital admission and were included in these analyses. The median time from symptom onset to blood sample collection was 24 days (IQR: 21-28, range 13-39). The rapid immunodiagnostic test detected antibodies in 153 (95.6%) of the samples and the S-Flow assay in 159 (99.4%), failing to detect antibodies in one sample collected 18 days after symptom onset (the rapid test did not detect antibodies in that patient). Neutralizing antibodies (NAbs) were detected in 79%, 92% and 98% of samples collected 13-20, 21-27 and 28-41 days after symptom onset, respectively (P = 0.02). INTERPRETATION: Antibodies against SARS-CoV-2 were detected in virtually all hospital staff sampled from 13 days after the onset of COVID-19 symptoms. This finding supports the use of serologic testing for the diagnosis of individuals who have recovered from SARS-CoV-2 infection. The neutralizing activity of the antibodies increased overtime. Future studies will help assess the persistence of the humoral response and its associated neutralization capacity in recovered patients. FUNDINGS: The funders had no role in study design, data collection, interpretation, or the decision to submit the work for publication.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Adult , Antibodies, Neutralizing/blood , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , France , Health Personnel , Hospitals , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Serologic Tests , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL